Clustering is Easy When ....What?

نویسنده

  • Shai Ben-David
چکیده

It is well known that most of the common clustering objectives are NP-hard to optimize. In practice, however, clustering is being routinely carried out. One approach for providing theoretical understanding of this seeming discrepancy is to come up with notions of clusterability that distinguish realistically interesting input data from worst-case data sets. The hope is that there will be clustering algorithms that are provably efficient on such “clusterable” instances. This paper addresses the thesis that the computational hardness of clustering tasks goes away for inputs that one really cares about. In other words, that “Clustering is difficult only when it does not matter”1 (the CDNM thesis for short). I wish to present a a critical bird’s eye overview of the results published on this issue so far and to call attention to the gap between available and desirable results on this issue. A longer, more detailed version of this note is available as [2]. I start by discussing which requirements should be met in order to provide formal support to the the CDNM thesis. I then examine existing results in view of these requirements and list some significant unsolved research challenges in that direction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering with a Reject Option: Interactive Clustering as Bayesian Prior Elicitation

A good clustering can help a data analyst to explore and understand a data set, but what constitutes a good clustering may depend on domain-specific and application-specific criteria. These criteria can be difficult to formalize, even when it is easy for an analyst to know a good clustering when they see one. We present a new approach to interactive clustering for data exploration called TINDER...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

Diagnostic and therapeutic challenges for dermatologists: What shall we do when we don’t know what to do?

What shall we do when we have done everything we could for the diagnosis and treatment of a patient, but were not successful? What shall we do when there is no definite treatment for a patient? What shall we do when we have no diagnosis or treatment for a patient? Some useful suggestions are presented here to get rid of these situations.

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1510.05336  شماره 

صفحات  -

تاریخ انتشار 2015